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Deformation potentials in 2 ~ -  and 3~-deformable jellium 

In-Keun Oh, J Mahanty and M P Das 
Department of Theoretical Physics, Reseaxh School of physical Sciences and Fngineering, 
The AusMian National University, GPO Box 4, Canberm ACT 0200, Australia 

Received 8 March 1994 

Abstract. This paper gives an analysis of the dependence of the skength of h deformation 
potential on the dimensionalily of the solid, The model chosen lo represent the electron gas 
interacting with the background of ions is the 20- and 3~~deformable jellium. It is shown that 
the skength of the deformation potential in ID-deformable jellium is higher than that in the ID 
CaSe. 

1. Introduction 

The rale of deformation potential in semiconductor physics has received much attention, both 
theoretically [l-181 and experimentally [19-241, since Bardeen and Shockley [I]  introduced 
the concept in 1950 in the context of electron-phonon coupling in semiconductors. The 
concept has been generalized and extended to more complicated systems including general 
strain effects in metals and dielectrics [Z-101. Parmenter [2] gave a method of evaluating 
deformation potentials using a modified perturbation theory, rather than the conventional 
first-order perturbation theory. Later, perturbation-theoretic methods using an inverse 
transformation of coordinates between the strained and the unstrained systems, so as to 
use the same boundary conditions in the two cases, were developed further by Whitfield 
[7], by Bir and Pikus [5], and by Kartheuser and Rodriguez 1141. The effect of the long- 
range electrostatic contribution on the deformation potentials was taken into account by 
Lawaetz [15], Gram and J~rgensen [16], Resta and co-workers [17, 181, and Van de Walle 
and Martin [Z]. Recently, more rigorous and more general proofs of the deformation 
potential theorem (i.e.. the relation between the matrix elements of the electron-phonon 
interaction and the shifts of the electronic levels as a function of macroscopic strain) have 
been provided by Khan and Allen [ 121 for the rigid-ion model, by Kartheuser and Rodriguez 
[14] for both rigid-ion and deformable-ion models, and by Resta [I81 within the framework 
of density-functional theory. 

There have been some discussions lately on the deformable jellium model [26]. In 
the ordinary jellium model of a homogeneous electron gas the positive background is non- 
responsive, providing local charge neutrality only in equilibrium. In the case of low electron 
density, when the electronic part of the system develops long-range order (e.g., charge- 
density waves or Wigner solid), it is instructive to consider a deformable jellium [26] in 
which the background shows its response by deforming itself to preserve local charge 
neutrality, so that the long-range Coulomb interaction is diminished. Therefore, there 
are no long-range electrostatic contributions to deformation potentials in the deformable 
jellium. The evaluation of deformation potentials is done from the change in electronic 
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band parameters caused by strain and the consequent change in the lattice constants of the 
crystal. When the strain is due to acoustic waves of long wavelength, the background can 
be well approximated by a continuum as in the deformable jellium model. 

Deformation potentials play a major rdle in the properties of carrier mobilities [3-5, 
231, acoustoelectric effect 1191, cyclotron resonances [20], piezo-electroreflectance [21], 
electron-phonon interaction 113, 221, phonon emissions [24, 271, absorption of heat pulses 
[28], band line-up in semiconductor heterojunctions [25], etc. There are several different 
definitions of deformation potential depending on the kinds of strain applied to the system 
[ 1.41 and the energy states compared before and after the deformation [ 12-14]. Furthermore, 
there is some confusion in terminology [29] and definition of deformation potentials [30]. 

This work deals with deformation potentials in a deformable jellium where the density 
parameter ( rs )  is less than that at the melting point of the Wigner crystal. We shall deal with 
the hydrostatic deformation potential associated with hydrostatic strains. The Rydberg (Ryd) 
is the unit of energy and of the deformation potential used in the paper. Most calculations 
for low-dimensional systems of physical quantities that depend on the deformation potential 
have used the 3D results. To our knowledge, ab initio estimates of the deformation potential 
of a 2D system have not been made before. 

We compare the energy of 2D- and 3D-deformable jellium in section 2. We shall give a 
brief discussion of the several definitions of deformation potentials and the relations between 
them and provide exact expressions of the hydrostatic deformation potentials in ZD- and 3D- 
deformable jellium within the Hattree-Fock (HF) approximation in section 3. Section 4 
gives a brief summary. 

2. Hamiltonian for a deformable jellium in the HF approximation 

The jellium model [31] consists of a system of N electrons embedded in a homogeneous 
background of equal positive charge so that the system is electrically neutral. The jellium 
Hamiltonian 'H may be written as 

where vbb and Vcb are the background-background interaction and the electron-background 
interaction respectively. In the WF approximation, the Hamiltonian can be written as 

XHF = T + v d  + vex + Vbb + Veb (2.2) 
where T is the kinetic energy, and V, and V, are the direct and non-local exchange parts 
of the electron4ectron interaction respectively. The deformable jeliium is defined by the 
condition [26] 

v d  + vb4 + veb = 0 (2.3) 
which means that the positive background deforms itself in order to locally neutralize the 
system. In this deformable jellium, the single-particle energy ~ ( k )  can be written in terms 
of the kinetic energy and exchange energy parts: 

E(k) = t ( k )  + vea(k) (2.4) 

where 
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Let us consider a deformable jellium in which the electron density parameter (r3) is 
less than the melting point of the Wigner crystal. In this case, we use plane waves as 
solutions in an approximation [26]. In the 3D-deformable jellium, the plane wave function 
@ k ( r )  = (I/&) eik.', with normalization volume no, gives the energy eigenvalue from 
equations (2.4), (2.5), (2.6) as 1321 

E3D(rl, rs) = (97c/4)2/3(rl/r,)2 - ( 4 / n ~ ~ n / 4 ) ' / ~  (l/rs) ~ ( r l )  

~ ( r l )  = [t + [(I - v2) /4~i  In 1(1 + rl)/(l - rl)1] (2.7) 
ro = (3/4np)'" = (9n/4)'l3/k~ 

r, = ro/ao rl = k/kF 

where p is the volume density of the electrons, kF is the Fermi wave vector, ro is the 
WignerSeitz radius, r, is the density parameter, and a0 is the Bohr radius. 

In the zD-deformable jellium, the wave function of the state with wave vector k is 

where R is the 2D position vector, k is the 2D wave vector, and A0 is the area for 
normalization. The exchange energy of one electron with wave vector k [33] is 

- - --E(;) 2e2kF 
7c 

where E(X) = E (n/2, x )  = f 2  4- de is a complete elliptic integral of the 
second kind. Therefore, the energy eigenvalue in 2D-deformable jellium is given by 

(2.10) 

where n is the areal density of the electrons and kF is the Fermi wave vector in ZD. 
Figure l(a) shows the energy eigenvalues of an electron in ZD- and 3~-deformable 

jellium. There are big differences between the band structures for high density (small 
rs). while there are slight differences between them for low density (large Is). The 
energy eigenvalues of the quasiparticles in deformable jellium in 3D and 2D respectively 
are &3D(0,r~) = -(4/n)(9n/4)'/3(l/rS) and EZD(O,r,) = -2fi(l/r,) at IC = 0, 
and &3D(l.rs) = (9n/4)2/3(1/r,)2 - ( 2 / n ) ( 9 ~ / 4 ) ' ~  (l/rs) and EZD(I,rr) = 2(l/rS)' - 
(44'5/rr) (l/rs) at the Fermi surface (k = kF). Therefore, the exchange energy effect for 
ZD at the band minimum is stronger than that for 3D. In the ground state, the quasiparticle 
energies are always negative for r, 3.015 in 3D and for r, > 1.111 in 2D. 

The total energy can now be calculated from 

(2.11) 
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Therefore, the average energy of an electron in ZD- and in 3D-deformable jellium can be 
derived from equations (2.7), @.lo), (2.11): 

2D 1 8 4 1  
rs 331 r, 

= - -- (2.12) 

(2.13) 

As shown in figure I@), while the average energy per electron in 2D differs significantly 
from that in 3D for high density, the average energy per electron for low density is similar 
for the two dimensions. The minima of the average energy per electron with respect to 
r, in 2D and 3D are -0.360 Ryd at r, = 1.67 and -0.095 Ryd at r, = 4.82 respectively. 
The average energy per electron in ZD is more sensitive than that in 3D with respect to the 
electron density parameter r,. The average energy per electron is always negative in the 
range of r, > 0.83 in 2D and r, > 2.41 in 3D. 

3. Effect of strain on energy eigenvalues 

Let us first consider the effect of a general external macroscopic strain on the energy 
eigenvalues in deformable jellium. A general strain for small deformations is defined by 
PI 

E . .  - - 1 (- auj + 2) 
" - 2 axi 

where ui is the xi-axis component of the displacement vector U. Even though we do not 
have any periodic smcture of positive ions in a jellium, we can define a strain tensor of 
equation (3.1) along the lines of the theory of elasticity in continuous media [34]. 

Before classifying the 
deformation potentials, we first consider the effect of a strain on energy eigenvalues in a 
deformable jellium. The Schrodinger equation for an electron in an unstrained deformable 
jellium is 

There are several definitions of deformation potentials. 

(3.2) 

with E0(k) = to(k)+u:x(k) and $ k ( ~ )  = (I/&)Sk.'. The wave vector in the unstrained 
deformable jellium is given by 

(3.3) 

where Lp is the size of the unstrained system (Qo = L:L;L:). The Schradinger equation 
for an electron in the strained deformable jellium can be written as 

2nni ki = - (i = x ,  y. z ;  n, = 0, &l, f2,. . .) 
Lp 

f i 2  
[ff(r, v, + d + k ' I =  -,VZ+dd 

(3.4) 
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where &(kc) = f(k,) + uex(ke) is the single electron energy and $k ' (T )  = (l/fi)eikn" is 
the eigenfunction in the strained deformable jellium. If the eigenstate in the unstrained 
deformable jellium has a wave vector k, the corresponding eigenstate in the strained 
deformable jellium has the wave vector ke = (1 - EJ . 8. The effect of a small strain 
- E may be treated as a perturbation. Introducing new coordinates such that IS] 

T' = (I + 0-1 . T = a- d.r (3.5) 

p'=Q+d-p (3.6) 
the Schrodinger equation in the new coordinates, to within the first order of strain q j ,  can 
be written as 

(3.7) 
with 

and 

.$,;,,(U + d . T ' ) .  (3.9) 

In other words. the the energy eigenvalue of the strained deformable jellium in the new 
coordinates can be written as 

& ( ( I - d . k ; )  = E ( ( I - d ) - k )  (3.10) 

because we have k, = (I - d . k :  from the coordinate transformation and k, = (I - d . k  
from the effect of the strain. Therefore, we have k: = k. [HI can now be regarded as 
a perturbation of [Ho]. The wave function of [&(TI,  V', $i,.J$Q is just the plane wave 
form (l/fi)&k'r'. When it is wtitten in terms of the original coordinates of the strained 
deformable jellium, the wave function is 

(3.11) 

Therefore, $k belongs to the wave vector ke = c - & . k  and to energy &'(kc). The energy 
eigenvalue of [H ' ]  associated with the solution of 

(3.12) [HO(T', v', $k, ('"'))$k(T')I E Eo(k)$k(T') 

is 

E ( ( 1 - d . k )  =&O(k) + C q ; ( D ; j )  (Di,) = / $i(r)[Dj;]dr. (3.13) 
ij % 
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There is no unique definition of the deformation potential for a strain S. If we compare 
the energies at the wave vector k, in the strained system and the wave vector k in the 
unstrained system, then the deformation potential [35] is given by 

(3.14) 

where ( D i j )  = (klDijlk) and E?(k) is called the band stmcture deformation potential 
[12-141. If we compare the energies at the same value of k, the deformation potential is 
defined by 

Suppose now that there is a phonon with a wave vector q. The displacement U at 
the point T gives rise to a change in the density of the electrons. Hence the change of 
density induces a change in potential (i.e. 6 V ( r )  = V ( r  -21) - V ( r )  = V ' j ~ i j ) .  The 
deformation potential theorem introduced by Bardeen and Shockley [I] is the relation of 
the change per macroscopic strain in the energy of an electron level to the matrix elements 
of the electron-phonon interaction. The theorem for phonons with wave vector p is given 

(k + q[f&lk) = Z z y ( k ) ~ i j  = (@,!(k) + m v j ( k ) ~ j ( k ) )  ~ , j  (3.16) 
by 

ij J 
where Hep = W ( T )  is the change in the potential energy of an electron under the strain g 
and ui (k) is the group velocity of the electron. The theorem was proved by Khan and Allen 
[12] within the rigid-ion model of BV(T), by Kartheuser and Rodriguez [14] within both 
the rigid-ion model and the deformable-ion model of SV(r) ,  and by Resta [18] within the 
Kohn-Sham potential of 6V(r)  in the density-functional theory. In fact, the theorems of 
[ 12, 141 are valid only for metals. Resta extended the theorem to both metals and dielectrics, 
which is valid for any long-wavelength phonon, by generalizing deformation potentials by 
taking into account the long-range nature of the Coulomb interaction which has a fourth- 
rank tensor term. He showed that the deformation potential theorem has different aspects 
in metals and dielectrics. In the case of deformable jellium, there is no effect of long-range 
Coulomb interaction, so that the deformation potential theorem is reduced to equation (3.16). 

Let us now consider the deformation potentials due to kinds of strain applied to a 3 D  
system. The hydrostatic deformation potential Eh(k) [ I ,  111 due to a uniform hydrostatic 
strain .sh = ~ ~ ~ 2 %  + ~ ~ ~ e $  +E& (d In GO = TI@ = 3 ~ ,  = qr = E = dro/ro) 
is defined by 

A&(k) = 8b(k)  (Exx + Eyy + E L ; )  = Exx(k)Exr  + E y y ( k ) E y y  + E;l(k)EzL. (3.17) 
The deformation potential E&) [4] due to a dilation [29] 3 = E,,&%+ E ~ ~ ~ / S  (dln A0 = 
E~~ = 2 ~ ) ,  which is a strain of two directions perpendicular to one axis (e.g. z-axis) 
without a strain in the axis, is given by 

(3.18) 
And the deformation potential E&) [4] due to a uniaxial swain gu = E&$ + ~ ~ ~ e f /  + 
E& ( E ~ ~  = -cqZ. U is Poisson's ratio), which is a combination of a tension along 
an axis (e.g. z-axis) and a compression in the two directions perpendicular to the axis, is 
defined by 
A&@) = Eu(k)~: ,  = Z x x ( k ) ~ x x  + E y y ( k ) ~ y y  + E,,(~)E,~ 

= 

b&(k) = &(k) ( E x x  + Eyy)  = E x x ( k ) E r x  + e y y ( k ) E y y .  

= (-U [ E,,(k) + Eyy(h)} + Er&)) E Z Z .  (3.19) 
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It is easy to handle the uniaxial deformation potentials from the viewpoint of experiments 
[ 19-2 11. 

In this work, we shall use the band smcture deformation potential as given in equation 
(3.14) and the hydrostatic deformation potential as defined by equation (3.17). Therefore, 
the hydrostatic deformation potential in 3D can be written as 

rr3D 1 '  l 3  

3 k l  3 i=l 
(k) = - Et(k) = - C(Di,). 

Let us define the hydrostatic deformation potential in 2D by 

(3.20) 

(3.21) 

Also, we can define a uniaxial deformation potential in ZD due to a strain dD = 
~ ~ ~ i i  + (E== = -pyy), which is a combination of an expansion along an axis 
(e.g. y-axis) and a compression along the other axis (e.g. x-axis), by 
AE(k) = Ep(kbYy = % x x ( k ) ~ , ,  + Eyy(k)~yy = ( -sS, , (k)  + Eyy(R))~yy. (3.22) 
The uniaxial deformation potential in both ZD (for q = 1) and 3D (for U = f) should vanish 
for an isotropic band structure. 

In the case of the ZD-deformable jellium, the hydrostatic deformation potential due to a 
uniform strain associated with d In A0 = = 2e (E = dro/ro) from equation (3.21) 
will be 

+ 

(3.23) 

In the 3D-deformable jellium, the hydrostatic deformation potential due to to a uniform 
strain associated with d In SZO = 3~ = 3dro/ro from equation (3.20) is 

(3.24) 

As shown in figure 2, the kinetic energy contribution to the deformation potential is 
larger in the case of high electron density (for small rs) than in that of low electron density 
(for large rs)  in both 2D and 3D. The deformation potential in 2D is generally higher than that 
in 3D for the same value of r, (see figure 3). At the band minima, the deformation potentials 
are given by EiD(rs.O) = 2d(1/rS)  in ZD and SID(rs,O) = (4/n)(9~/4)'/~(1/rJ in 3D. 
Therefore, for the higher electron density, the deformation potential at the band minimum 
will also be higher. The quasiparticle deformation potential at the Fermi surface changes 
over from negative to positive value for increasing r, at r, = 1.1 1 for 2D and at r, = 2.01 
for 3D, and has maximum values, 0.41 Ryd at r, = 2.22 for ?D, and 0.15 Ryd at r, = 4.02 
for 3D (see figure 3). 

Let us now define the average deformation potential, which is the change of the average 
energy of an electron per uniform hydrostatic strain dln Y D ( P  = Ao. S3D = SZo), by 

(3.25) 

where nD represents the dimension of the system and €:E is the average energy of an 
electron in dimension nD. Therefore, the average deformation potential in zD-deformable 
jellium will be 

(3.26) 
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Figure 2. The hydrostatic deformtion potentials of aquasiparticle in (a) zo-deformable jellium 
and (b) ?odeformable jellium. 

and the average deformation potential in the so-deformable jellium will be given by 

(3.27) 
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4. Summary 

It is established that the deformable jellium model provides a good description of the 
ground-state properties of many-particle metallic systems in the low-density regime. This 
model has been successfully applied [26] to electronically ordered states like charge-density- 
wave states and Wigner solids. Unlike ordinary jellium the deformable jellium includes the 
response of the background. The long-range Coulomb interactions are effectively screened 
by this response. 

In  this paper we have used the deformable jellium model to calculate the energy spectrum 
of quasi-particles in the HF approximation. Since we are away from any electronically 
ordered phase, we have used a plane wave as an approximation to the electronic states. 
Calculations of the quasi-particle energies are done for ZD- and 3~-deformablejellium, The 
quasi-particle energies are used to calculate the deformation potentials. It has been found 
that the strength of the deformation potential in 2D-deformable jellium is higher than that 
in the 3D case. We plan to extend this work to heterostructures with finite thickness. 
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